Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century

نویسندگان

  • Camilo Mora
  • Chih-Lin Wei
  • Audrey Rollo
  • Teresa Amaro
  • Amy R. Baco
  • David Billett
  • Laurent Bopp
  • Qi Chen
  • Mark Collier
  • Roberto Danovaro
  • Andrew J. Gooday
  • Benjamin M. Grupe
  • Paul R. Halloran
  • Jeroen Ingels
  • Daniel O. B. Jones
  • Lisa A. Levin
  • Hideyuki Nakano
  • Karl Norling
  • Eva Ramirez-Llodra
  • Michael Rex
  • Henry A. Ruhl
  • Craig R. Smith
  • Andrew K. Sweetman
  • Andrew R. Thurber
  • Jerry F. Tjiputra
  • Paolo Usseglio
  • Les Watling
  • Tongwen Wu
  • Moriaki Yasuhara
چکیده

Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming

A climate model that includes a coupled ocean biogeochemistry model is used to define large oceanic biomes in the North Pacific Ocean and describe their changes over the 21st century in response to the IPCC Special Report on Emission Scenario A2 future atmospheric CO2 emissions scenario. Driven by enhanced stratification and a northward shift in the mid-latitude westerlies under climate change,...

متن کامل

Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century

It is recognized that anthropogenic factors have had a major impact on carbon fluxes from land to the ocean during the past two centuries. However, little is known about how future changes in climate, atmospheric CO2, and land use may affect riverine carbon fluxes over the 21st century. Using a coupled hydrological-biogeochemical model, the Dynamic Land Ecosystem Model, this study examines pote...

متن کامل

Observed 20th century desert dust variability: impact on climate and biogeochemistry

Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing ...

متن کامل

Pan-Arctic land–atmospheric fluxes of methane and carbon dioxide in response to climate change over the 21st century

Future changes of pan-Arctic land–atmospheric methane (CH4) and carbon dioxide (CO2) depend on how terrestrial ecosystems respond to warming climate. Here, we used a coupled hydrology–biogeochemistry model to make our estimates of these carbon exchanges with two contrasting climate change scenarios (no-policy versus policy) over the 21st century, by considering (1) a detailed water table dynami...

متن کامل

The Acpi Climate Change Simulations

The Parallel Climate Model (PCM) has been used in the Accelerated Climate Prediction Initiative (ACPI) Program to simulate the global climate response to projected CO2, sulfate, and other greenhouse gas forcing under a business-as-usual emissions scenario during the 21st century. In these runs, the oceans were initialized to 1995 conditions by a group from the Scripps Institution of Oceanograph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2013